The M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance.

نویسندگان

  • Huihui Chong
  • Xue Yao
  • Zonglin Qiu
  • Jianping Sun
  • Yuanyuan Qiao
  • Meng Zhang
  • Meitian Wang
  • Sheng Cui
  • Yuxian He
چکیده

OBJECTIVES Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 are potent fusion inhibitors. We have recently demonstrated that the unique M-T hook structure preceding the pocket-binding motif of CHR peptide-based inhibitors can greatly improve their antiviral activity. In this study, we applied the M-T hook structure to optimize sifuvirtide (SFT), a potent CHR-derived inhibitor currently under Phase III clinical trials in China. METHODS The peptide MT-SFT was generated by incorporating two M-T hook residues (Met-Thr) into the N-terminus of sifuvirtide. Multiple structural and functional approaches were used to determine the biophysical properties and antiviral activity of MT-SFT. RESULTS The high-resolution crystal structure of MT-SFT reveals a highly conserved M-T hook conformation. Compared with sifuvirtide, MT-SFT exhibited a significant improvement in the ability to bind to the N-terminal heptad repeat, to block the formation of the six helix bundle and to inhibit HIV-1 Env-mediated cell fusion, viral entry and infection. Importantly, MT-SFT was fully active against sifuvirtide- and enfuvirtide (T20)-resistant HIV-1 variants and displayed a high genetic barrier to developing drug resistance. CONCLUSIONS Our studies have verified that the M-T hook structure offers a general strategy for designing novel HIV-1 fusion inhibitors and provide new insights into viral entry and inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide.

Sifuvirtide (SFT) is an electrostatically constrained α-helical peptide fusion inhibitor showing potent anti-HIV activity, good safety, and pharmacokinetic profiles, and it is currently under phase II clinical trials in China. In this study, we demonstrate its potent and broad anti-HIV activity by using diverse HIV-1 subtypes and variants, including subtypes A, B, and C that dominate the AIDS e...

متن کامل

Design of a highly potent HIV-1 fusion inhibitor targeting the gp41 pocket.

OBJECTIVE T20 (Enfuvirtide), which is a 36-residue peptide derived from the C-terminal heptad repeat (CHR) of gp41, is the only clinically available HIV-1 fusion inhibitor, but it easily induces drug resistance, which calls for next-generation drugs. DESIGN We recently demonstrated that the M-T hook structure can be used to design a short CHR peptide that specifically targets the conserved gp...

متن کامل

Drug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs

Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...

متن کامل

Drug-Resistant HIV-1 RT Gene Mutations in Patients under Treatment with Antiretroviral Drugs (HAART) in Iran

Abstract Background and Objective: Highly Active Antiretroviral Therapy (HAART) can effectively prevent the progression of HIV-1 replication and increase life expectancy. There are numerous causes of treatment failure and the leading one is drug resistance. Thus, we aimed to determine the HIV RT gene drug resistance mutations in patients treated with antiretroviral medications. Material...

متن کامل

Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket

The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 69 10  شماره 

صفحات  -

تاریخ انتشار 2014